Extrafloral nectaries in aspen (Populus tremuloides): heritable genetic variation and herbivore-induced expression.
نویسندگان
چکیده
BACKGROUND AND AIMS A wide variety of plants produce extrafloral nectaries (EFNs) that are visited by predatory arthropods. But very few studies have investigated the relationship between plant genetic variation and EFNs. The presence of foliar EFNs is highly variable among different aspen (Populus tremuloides) genotypes and the EFNs are visited by parasitic wasps and predatory flies. The aim here was to determine the heritability of EFNs among aspen genotypes and age classes, possible trade-offs between direct and indirect defences, EFN induction following herbivory, and the relationship between EFNs and predatory insects. METHODS EFN density was quantified among aspen genotypes in Wisconsin on trees of different ages and broad-sense heritability from common garden trees was calculated. EFNs were also quantified in natural aspen stands in Utah. From the common garden trees foliar defensive chemical levels were quantified to evaluate their relationship with EFN density. A defoliation experiment was performed to determine if EFNs can be induced in response to herbivory. Finally, predatory arthropod abundance among aspen trees was quantified to determine the relationship between arthropod abundance and EFNs. KEY RESULTS Broad-sense heritability for expression (0.74-0.82) and induction (0.85) of EFNs was high. One-year-old trees had 20% greater EFN density than 4-year-old trees and more than 50% greater EFN density than > or =10-year-old trees. No trade-offs were found between foliar chemical concentrations and EFN density. Predatory fly abundance varied among aspen genotypes, but predatory arthropod abundance and average EFN density were not related. CONCLUSIONS Aspen extrafloral nectaries are strongly genetically determined and have the potential to respond rapidly to evolutionary forces. The pattern of EFN expression among different age classes of trees appears to follow predictions of optimal defence theory. The relationship between EFNs and predators likely varies in relation to multiple temporal and environmental factors.
منابع مشابه
Variable extrafloral nectary expression and its consequences in quaking aspen
Extrafloral nectaries (EFNs) are secretory glands most commonly linked to defensive mutualisms. Both a plant’s need for defense and the strength of defense provided by mutualists will vary with plant condition and local insect community. Thus, the benefit of EFNs may vary spatially and temporally. However, little attention has been paid to natural variation in the presence and abundance of EFNs...
متن کاملPoplar extrafloral nectaries: two types, two strategies of indirect defenses against herbivores.
Many plant species grow extrafloral nectaries and produce nectar to attract carnivore arthropods as defenders against herbivores. Two nectary types that evolved with Populus trichocarpa (Ptr) and Populus tremula × Populus tremuloides (Ptt) were studied from their ecology down to the genes and molecules. Both nectary types strongly differ in morphology, nectar composition and mode of secretion, ...
متن کاملPolyphenol oxidase and herbivore defense in trembling aspen (Populus tremuloides): cDNA cloning, expression, and potential substrates.
The biochemical anti-herbivore defense of trembling aspen (Populus tremuloides Michx.) was investigated in a molecular analysis of polyphenol oxidase (PPO; EC 1.10.3.2). A PPO cDNA was isolated from a trembling aspen wounded leaf cDNA library and its nucleotide sequence determined. Southern analysis indicated the presence of two PPO genes in the trembling aspen genome. Expression of PPO was fou...
متن کاملDefensive eVects of extraXoral nectaries in quaking aspen diVer with scale
The eVects of plant defenses on herbivory can diVer among spatial scales. This may be particularly common with indirect defenses, such as extraXoral nectaries (EFNs), that attract predatory arthropods and are dependent on predator distribution, abundance, and behavior. We tested the defensive eVects of EFNs in quaking aspen (Populus tremuloides Michx.) against damage by a specialist herbivore, ...
متن کاملQuantitative-genetic variation in morphological and physiological traits within a quaking aspen (Populus tremuloides) population
Genetic diversity within populations is an important component of adaptive evolution, and recent research has demonstrated that genetic variation within plant populations can have important ecological effects. In this study, we investigate quantitative-genetic variation in several traits within a quaking aspen (Populus tremuloides Michx.) population. A common garden experiment was planted with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals of botany
دوره 100 6 شماره
صفحات -
تاریخ انتشار 2007